https://youtu.be/aW5_voFk938?si=hEwqM1kQCDBAwbd0 ES Advocate 김종민님 전통 검색엔진으로서의 ES '사용자가 입력한 query'가 포함된 Docs를 Text Matching 방식으로 찾는다. Docs 저장할 때 Tokenizer 사용해서 text -> index 변환 해당 docs가 query를 얼마나 많이 포함하고 있는지를 TF 같은 요소를 기반으로 점수 계산. -> 연관도 높은 결과를 가져온다. LLM 등장으로 '검색엔진이 질문 의미를 이해하고, 적합한 결과를 가져오는 형태'의 서비스를 제공하려는 시도가 늘었음. query와 매칭되지는 않지만, query의 해답인 'connection speed requirements' 정보를 포함한 docs를 리턴하는 ..